

FACE RECOGNITION PERFORMANCE UNDER AGING

Debayan Deb, Lacey Best-Rowden, Anil K. Jain Michigan State University, PRIP Lab {debdebay, bestrow1, jain}@msu.edu

July 21, 2017

Motivation

- Unlike PIE facial variations, aging is intrinsic and cannot be controlled by image capture or subject cooperation
- Critical to determine state-of-the-art robustness to facial aging
 - · Large time lapse can result in false reject errors
 - Expiration periods for ID credentials (5-10 years)
 - Should be informed by FR performance
- Longitudinal datasets available for research are lacking
 - FG-NET: 82 subjects total, relatively poor image quality
 - MORPH: only ~300 subjects with at least 5 images over at least 5 years

19 years

25 years

30 years

35 years

25 years

32 years

Longitudinal Face Datasets

- Subsets of larger mugshot databases obtained from law enforcement agencies
 - Pinellas County Sheriff's Office (PCSO)
 - Michigan State Police (MSP)

	PCSO	MSP
No. of images	147,784	82,450
No. of subjects	18,007	9,572
Avg. no. of images per subj.	8	9
Avg. time lapse (yrs)	8.5	9.0
Min - Max time lapse (yrs)	5 - 16	4 - 14
Age Range (yrs)	18 - 83	18 - 78
Male / Female (%)	83 / 17	88 / 12
Black / White (%)	61 / 39	52 / 48

Face Matchers

- Two state-of-the-art face matchers
 - COTS-A: one of the top-3 performers in NIST FRVT 2014
 - COTS-B: based on deep convolutional network
- At what rate do genuine similarity scores change over time due to time lapse (and other covariates)?

Approach: Mixed-effects Statistical Models

Level-1 Model (within-subject variability)

$$y_{ij} = \varphi_{0i} + \varphi_{1i} x_{ij} + \varepsilon_{ij}$$

$$\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$$

Genuine similarity score between the enrollment and jth images of subject j Covariate: elapsed time, age, face quality, etc.

$$\varphi_{0i} = \beta_{00} + b_{0i} \\ \varphi_{1i} = \beta_{10} + b_{1i} \\ + b_{1i} \\ \end{pmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix} \right)$$

Fixed effects: Random effects: Population-mean trend Deviations from

Random effects: Deviations from population-mean trend

Results: COTS-A on PCSO

Enrollment Image	Query Images age in years (quality of image)			
34 (57.09)	37 (60.72)	38 (54.57)	40 (52.40)	47 (52.79)
33 (72.26)	34 (40.22)	37 (39.16)	39 (42.91)	43 (43.17)
44 (65.39)	55 (50.28)	56 (56.64)	57 (49.79)	58 (23.07)
49 (83.61)	55 (28.76)	56 (43.89)	58 (41.87)	59 (56.94)

Results: Time Lapse & Face Quality

- Face quality measure from COTS-B SDK
- Figures shown are plotted for average quality mugshot images

Results: Gender and Race

Is subject-specific variability explained by demographics?

- Consistent for COTS-A on both PCSO and MSP
- Matcher-dependent for MSP database
 - Differences between COTS-A and COTS-B likely due to training set

Conclusions

- Elapsed times tolerated by COTS face matchers
 - At 0.01% FAR, COTS-A can verify 99% of population up to 10.5 years; accuracy drops to 95% of the population after an additional 2-3 years
- COTS-B is overall weaker matcher than COTS-A, but longitudinal performance is comparable
 - After accounting for face quality
- Demographic effects on genuine scores
 - Database-independent for COTS-A
 - Matcher-dependent on MSP datasets
- Methodology should be periodically conducted to reassess state-of-the-art robustness to facial aging

Results: COTS-A vs. COTS-A₀

Results: Time Lapse & Face Quality

	Max time lapse (years) at which 99% of population can be verified		
	0.01% FAR		
	Without FQ	At average mugshot FQ	
PCSO (COTS-A)	10.5	10.5	
MSP (COTS-A)	9.5	10.5	
MSP (COTS-B)	5.5	8.5	